
Guld:	Universal	Protocol	for
Relative	Consensus
Author:	Ira	MIller

Path:	life/isysd

Email:	public@iramiller.com

Abstract

A	polytree	with	signed,	typed,	symmetrical	nodes	can	be	used	to
represent,	record,	compare,	and	perform	operations	on	individual	and
group	perspectives	on	any	topic	describable	in	a	digitized	record.	This
	blocktree		would	then	represent	a	virtual	universe	for	the	participants,
including	natural	causality	and	one-directional	"time".	The	participants
would	be	able	to	make	assertions	about	each	other's	perspectives,
building	proofs	of	consensus	or	dissent.	Using	existing	technologies	like
git,	pgp,	and	ssh	such	a	polytree	can	be	constructed	in	a	timely	and
accessible	manner,	while	maintaining	scalability	and	decentralization	at
the	protocol	level.

Introduction

Since	Bitcoin(1)	introduced	the	blockchain	concept	in	2009,	hundreds	of
experimental	technologies	have	been	developed	to	help	users	achieve
consensus	on	one	topic	or	another.	The	majority	of	these	have	been
organized	around	the	model	of	a	central,	unbranching	trunk	of	absolute
truth,	i.e.	a	blockchain.	To	"fork"	a	blockchain,	is	perceived	as	negative,
because	it	breaks	the	implicit	or	explicit	contract	of	absolute	truth	that
formed	the	chain.



Perhaps	due	to	their	unforkability,	blockchains	have	proved	inflexible	at
managing	conflict	and	change.	Though	Turing	complete	contract	systems
have	been	created(2),	these	have	so	far	been	insufficient	to	address	the
problem	of	the	Firm(3),	let	alone	the	Government(4).	This	restricts
blockchains	to	the	realm	of	prices	and	payment	systems,	and	outside	of
the	firm.(5)

A	relativistic	blocktree	of	perspectives	would	be	a	much	more	flexible	and
powerful	platform	for	propagation	of	information	in	contracts,
communities,	firms,	and	governments.	Such	trees	operate	on	abstract
beliefs	and	observations	to	create	causal	relationships	between	nodes,
and	allow	efficient	proofs.(6)

Individual	Observers

"I	think,	therefore	I	am"(7)	is	a	beautiful	and	strong	proof,	but	it	only	works
for	the	observer	himself.	A	modernization	using	asymmetric	cryptography
would	be	"I	sign	a	unique	perspective	using	this	key,	therefore	I	am."

To	show	the	distinction,	lets	consider	the	case	of	Rene	Descartes,	the
author	of	the	original	quote.	Was	he	real,	or	is	he	a	figment	of	your/my
dreams?	Even	he	would	admit	that	we	have	insufficient	evidence	to	prove
the	former.	But	consider,	what	if	he	had	generated	an	asymmetrical
keypair	using	an	algorithm	such	as	RSA,	not	invented	until	1983.(8)
Suppose	he	had	somehow	signed	his	book,	publishing	it	with	his	public
key	in	an	appendix.	Would	he	not	then	be	able	to	provide	a	signature
upon	request	proving	that	he	is	the	same	person	that	observed	the
original	proof?	Suppose	he	had	somehow	passed	the	private	key	down
through	the	generations	of	his	family	to	today,	without	it's	secret	being
revealed	publicly.	Would	not	his	heir	be	able	to	provide	proof	to	us,	even
today	of	the	relationship	between	the	key	and	the	work?	This	inherited
key	perspective	would	not	be	ideal,	but	it	would	be	sufficient	proof	even



for	M.	Descartes	to	accept.

Is	the	key	alone	sufficient	proof	to	accept	a	new		life	?	Surely	not,
because	the	key	is	an	inanimate	math	phenomenon	that	exists	in	nature.
A	thought	which	provably	could	not	have	come	from	yourself	must,
however,	be	evidence	of	some	other	thinker.	Multiple	thoughts	signed	by
that	same	key	indicate	a	strong	pattern	that	the	signer	is	the	thinker.	Daily
use	of	the	key	in	the	pattern	of	the	thinker's	life	make	it	almost	certain.

So,	let	us	define	a		life		(in		blocktree		terminology)	as	an	entity
capable	of	generating	an	asymmetrical	keypair,	and	using	it	to	publish	a
unique	perspective.	This	proof	is	still	relative,	but	now	it	is	relative	to	a
second	party,	the	observer	of	the	thinker.	This	process	can	then	build,	by
the	thinker	publishing	their	perspective	on	the	original	observer,	each	able
to	make	provable	assertions	about	the	other's	perspective,	and	the	state
of	their	network.(5)

Proof	of	Labor	(Observation)

1.	 Rene	signs	&	publishes	unique	thought	A,	along	with	public	key
RDKey

2.	 Observer	validates	signature	of	RDKey.
3.	 Observer	decides	on	uniqueness	of	thought	A	as	proof	of	a	living

perspective.
4.	 If	Observer	accepts	thought	A	as	unique,	Observer	can	safely	infer

that	the	signer	Rene	using	key	RDKey	is	also	alive.

Perspectives	(tree	nodes)

The	blocktree	requires	a	data	type	for	any	observer's	perspective,	which
make	up	primary	nodes	in	the	polytree.	In	practice,	a	plain	text	data	type
like	JSON	should	be	used,	but	abstractly,	the	perspective	can	be	thought
of	as	a	dialectic	logic	tree.	That	is,	each	node	inside	the	perspective	asks



a	boolean	question.

The	simplest	and	smallest	perspective	would	be	Descartes's	"I	think,
therefore	I	am",	where	his	thought	is	his	public	key.

path question

	life	 Is	the	record	a		life		as	defined	by	PoL?

	life/Rene	
Is	the	record	the	signer	known	as		Rene	,	who	uses
key		RDKey	?

	keys	 Is	the	record	an	ascii	armored	PGP	public	key?

	keys/RDKey	 Is	the	record	the	key	known	as	RDKey?

The	entries	are	either	the	raw	contents	that	answer	the	question,	or	a	git
submodule	linking	to	said	contents.	In	the	case	of	category	nodes,	like
	keys	,	the	raw	contents	may	be	a	directory,	which	in	git,	is	just	a	path	to
a	hashable	object.



The	'life/Rene'	case	is	more	complex.	What	is	Rene?	In	the	git	tree,	it	is	a
submodule,	referencing	the	HEAD	commit	of	the	parent	perspective.
More	subtle,	though,	Rene	is	the	pattern	of	observations	that	are	always
signed	using		RDKey	.	To	help	us	recognize	this,	Rene	keeps	all	of	these
observations	in	the	agreed	upon	perspective	taxonomy,	at	his	dedicated
namespace	in	the	tree,		life/Rene	.

Since	observers	recognize	each	other,	the	blocktree	is	symmetrical,	and
potentially	contains	an	infinite	number	of	perspective	branches.	Though
observers	can	use	different	formats	for	their	perspectives,	this	disrupts



the	functionality	of	the	blocktree,	as	relationships	only	develop	through
provable	consensus,	i.e.	symmetry.	So	Rene	must	use	the	conventional
perspective	taxonomy,	or	certainly	miscommunicate.

Assume	there	is	another	rational	entity	Baruch	Spinoza,	who	performs	a
similar	self-proof	using	BSKey.	The	two	would	not	necessarily	see	each
other	at	first,	and	would	be	in	self-contained	perspective	loops.	The
perspectives	would	be	symmetrical,	and	easily	comparable,	however,
should	any	outside	observer	read	them	both.

The	Blocktree

The	blocktree	itself	is	a	combination	of	many	perspective	nodes.	In	the
guld	software,	each	perspective	node	will	be	a	git	repository,	and	the	links
between	perspective	nodes	are	git	submodules.(9)	Since	submodules	are
not	the	complete	contents,	but	rather	a	SHA1	hash,	this	maintains	both
the	privacy	of	the	hashee	and	the	disk	space	of	the	hasher.

Baruch	could	read	Rene's	theory,	and	observe	that	RDKey	was	still	in
active	use.	Baruch	would	therefore	update	his	tree	by	referencing	Rene,



and	RDKey	in	their	respective	places.	This	would	yield	a	self-similar,
predictable	and	organized	tree.	Baruch	could	make	basic	assertions
about	Rene's	perspective,	such	as	"Rene	believes	he	exists."	Rene	would
not	necessarily	accept	any	premise	of	Baruch's,	but	would	be	able	to
prove	"Baruch	believes	Rene	exists".

Next,	let's	assume	there	is	a	two	way	communication	between	Rene	and
Baruch.	Rene	sees	that	Baruch	has	recognized	his	work,	and
reciprocates,	also	yielding	identical	hashes	for		life	,	and		keys	.	The
two	have	achieved	consensus.



The	simplest	state	of	consensus	is	a	symmetric	equilibrium	of	proven
existence	between	two	parties.	That	is,	both	parties	have	shared	public
keys,	and	proven	to	each	other	their	sentience	with	a	unique	thought.	In
git	practice,	an	additional	step	of	merging	trees	may	be	necessary,	but
that's	procedural.

When	in	a	state	of	absolute	consensus,	as	shown	above,	this	tree	is	one
level	of	perspective	nodes	deep,	but	n	rows	wide,	where	n	is	the	number
of	unique	observers.	In	git	terms,	every	submodule	in	the		life		directory
would	point	back	to	the	parent	repository.



When	there	is	disagreement,	each		life		node	may	represent	one	or
more	branch	points.	The	topography	of	this	branching	creates	a	control
surface	to	be	manipulated.	For	instance,	suppose	the	branching	is	on	the
topic	of	3d	shapes.	Their	trees	would	overlap	in	some	areas,	differ	in	the
area	of	shapes,	and	each	contain	at	least	a	reference	to	the	other.

Though	Rene	does	not	himself	recognize	the		cube		as	a	shape,	he	would
be	able	to	reference	it	using	Baruch's	definition,	and	vice	versa	for	Baruch
and	the		cylinder	.	Either	could	provably	assert	that	the	other	believed	in
such	a	foreign	thing,	referencing	the	other's	definition.

Communities

Suppose	that	Rene	and	Baruch	talk	it	out,	and	come	to	consensus	on	the
subject	of	shapes.	They're	so	excited	about	finally	reaching	accord,	that
they	decide	to	form	a	philosopher's	club	based	on	the	subject,



	ClubPhil	.

Suppose		ClubPhil		is	based	on	a	mutually	exclusive	charter	that	said
"all	members	must	always	agree	on	the	subject	of	shapes".	The	members
of		ClubPhil		agree	to	each	keep	a	copy	of	the	official	perspective	for	the
community,	including	any	unanimously	recognized	shapes,	keys,	and
lives	aka	members.	This	perspective	will	be	named		ClubPhil	,	and	live
in	the		ClubPhil		branch	of	the	community	clone	that	each	user	has
locally.

Each	member	of	the	community	would	be	able	to	prove	at	any	time	the
perspective	of	any	other	on	any	record,	including	the	contractual	shapes,
and	the	charter.	If	any	member	was	to	recognize	a	foreign	shape,	for
instance,	the	others	would	be	able	to	prove	breach	of	the		ClubPhil	
charter.



Then	let		community		in	the		blocktree		be	defined	as	an	agreement
between	mutually	recognized		life	s	to	publish	a	combined	perspective.

Co-signing	aka	Voting

How	then	would	the		ClubPhil		community	progress?	What	would
happen	if	one	day	Rene	discovered	the		bevel	?	Based	on	their	charter,
another	argument,	followed	by	a	community	fork	or	a	unanimous	update.
A	more	sophisticated	contract	could	be	written	with	some	effort,	that
would	take	into	account	the	process	of	debate,	creating	a	state	machine
for	the	community.	Debates	would	take	place	on	member	branches,	and
only	be	merged	into	the	community	branch	upon	reaching	a	threshold	of
approval.

Because	the	community's	state	will	be	hashed	into	each	user's
perspective	at	each	event	the	user	observes,	each	user	creates	a
constantly	affirmed	feed	of	their	perspective	on	the	state	of	the
community	and	all	relevant	records.	Since	each	record	is	behind	a		git	
submodule,	it	only	takes	up	the	space	of	a	hash.	Furthermore,	since		git	
only	tracks	changes,	only	the	changed	references	need	be	considered	or
stored	in	each	commit	block.

Therefore,	counting	"votes"	on	a	community	issue	is	trivial.	Simply	run	the
"x	believes	y"	proof	for	each	member	x	on	the	topic	y.	If	the	pre-arranged
community	threshold	(i.e.	50%,	100%)	for	merging	has	been	met,	every
member	knows	to	merge	topic	y	into	the	community	consensus	branch.

Different	weights	can	be	given	to	member	votes	within	a	community,	or
even	special	roles	and	responsibilities.	Since	the	basics	of	counting	and
tracking	states	do	not	change,	these	decisions	will	be	left	up	to
community	developers.

Finance



The	typical	blockchain	functionality	of	sequential,	trustless	transactions
can	be	achieved	by	filing	a	ledger	in	a	community	branch	of	the	blocktree.
The	community	can	manage	the	state	of	the	ledger,	in	the	same	way	that
	ClubPhil		manages	the	shapes	set.

While	such	a	ledger	could	theoretically	use	any	format,	plain	text	is	most
user	friendly,	and	efficient	in	the	chosen	file	system	of	git.	It	is	therefore
recommended	to	use		ledger-cli		for	all	blocktree	ledgers.(10)

The		ledger-cli		format	has	very	powerful	unit	control,	including	support
completely	custom	commodity	strings.	Combined	with	the	consensus	a
community	can	provide,	this	allows	new	digital	tokens	to	be	issued	and
controlled.

2017/06/7	ball4thegame

		Assets:ball4thegame:Ambassador										1000	XGC

		Equity:guld:Ambassador														-1000	XGC

Network

Though	the	standard		git		software	package	ships	with	a	server,	and	that
server	supports	p2p		ssh		authentication,	this	is	rarely	made	use	of.	In
practice,	users	tend	to	use	one	of	the	popular	hosting	services,	such	as
github,	bitbucket,	gitlab,	etc..	One	of	these	is	more	than	sufficient	for	the
average	open	source	project,	but	not	for	a	consensus	network.
Thankfully,	git	supports	a	multiple		remote		hosts	for	each	repository,	and
the	protocol	strengthens	the	user's	signed	ownership	of	the	state,	making
each	inter-changeable.

$	git	remote	-v

isysd				git@guld.host:isysd/guld.git	(fetch)

isysd				git@guld.host:isysd/guld.git	(push)

http://github.com/
http://bitbucket.org/
http://gitlab.com/


isysd-github				git@github.com:isysd/guld.git	(fetch)

isysd-github				git@github.com:isysd/guld.git	(push)

isysd-bitbucket				git@bitbucket.org:isysd/guld.git	(fetch)

isysd-bitbucket				git@bitbucket.org:isysd/guld.git	(push)

cindy-zimmerman				git@guld.host:cindy-zimmerman/guld.git	(fetch

cindy-zimmerman				git@guld.host:cindy-zimmerman/guld.git	(push

Because	we	recognize	that		isysd		is	a	living	person	who	uses	a	specific
PGP	key	to	publish	to	one	or	all	of	the		isysd*		mirrors	shown,	we	can
accept	the	most	up	to	date	with	his	signed	commits.	The	hosts	are	not	to
be	trusted.	Logistically,	checking	all	of	these	is	inefficient,	so	users	should
establish	P2P	socket	connections	with	their	friends	to	send	notifications
about	commits	and	hosts.

Any	mutually	accepted	users	of	the	protocol	could	publish	encrypted
contact	info	for	each	other,	including	IP	addresses	for	git	hosts	and	live
socket	sessions.	Ideally,	each	user	on	the	network	would	host	their	own
	git		servers,	using	software	like	gitolite(11)	to	manage	permissions	in
repository,	and	publishing	their	IP	address	(selectively	encrypted)	all	on
the	blocktree.

Example	Gitolite	configuration

@users	=	u1	u2	u3

	

repo	foo/CREATOR/[a-z]..*

				C			=			u1	u2	u3

				RW+	=			CREATOR

				RW		=			WRITERS

				R			=			READERS

This	would	create	a	provable	hosting	service,	where	the	host	can
demonstrate	compliance	with	community	access	rules,	and	even	put	the



configuration	itself	in	the	control	of	one	or	more	signing	users.

Running		git		and		ssh		servers	is	an,	as	yet,	under-assessed	security
risk	to	request	of	end	users.	Until	there	is	are	lots	of	data	from
experienced	systems	administrators,	and	the	protocol	has	stabilized,	end
users	should	not	be	required	to	host	their	own	repositories.

Starting	with	professional,	trustless	hosting	services,	the	guld	network	will
evolve	to	proven	hosts,	finally	to	a	completely	p2p,	self-hosted	network.

This	evolution	will	separate	guld	more	and	more	from	traditional
infrastructure	like	Dynamic	Name	Servers	(DNS),	gradually	reshaping	the
internet	on	P2P	terms,	with	P2P	identities,	governance,	and	finances	built
in.

Conclusion

The		blocktree		represents	a	rich,	self-contained	world,	with	causality
and	enforceable	laws	for	it's	participants.	By	using	relative	proofs	based
on	perspectives,	relative	truths	and	consensus	can	be	reached,	lost,	and
reachieved	flexibly,	in	ways	that	blockchains	are	unable	to	replicate.	This
blocktree	of	relative	truth,	or	truth	good	enough	for	a	community,	is
superior	to	blockchains	of	absolute	truth	for	human	contracts,	firms,	and
governments.

References

1	Satoshi	Nakamoto	"Bitcoin"	(2009)

2	Vitalik	Buterin	et	al	"Ethereum"	(2014)

3	Christoph	Jentzsch	"The	History	of	The	DAO	and	Lessons
Learned"

https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://blog.slock.it/the-history-of-the-dao-and-lessons-learned-d06740f8cfa5


4	The	block	size	controversy	entry	on	the	bitcoin	wiki.

[5]	R.	H.	COASE	"The	Nature	of	the	Firm"	(1937)

6	Jin	H.	Kim	and	Judea	Pearl	"A	COMPUTATIONAL	MODEL	FOR
CAUSAL	AND	DIAGNOSTIC	REASONING	IN	INFERENCE
SYSTEMS"

[7]	Rene	Descartes	"A	Discourse	on	Method"	(1637)	translated	by
John	Veitch	(2008)

[8]	Rivest,	Shamir,	Adleman	"Cryptographic	communications	system
and	method"	(1983)

[9]	Linus	Torvalds,	Junio	Hamano	et	all	"git"	(2005-)

10	John	Wiegley	et	all	"Ledger-cli"	(2003-)

11	Sitaram	Chamarty	"gitolite"	(2012-)

https://en.bitcoin.it/wiki/Block_size_limit_controversy
http://www.ijcai.org/Proceedings/83-1/Papers/041.pdf
http://ledger-cli.org/
http://gitolite.com/gitolite/wild/

